ASSIGNMENT OF ANOMERIC STRUCTURE TO CARBOHYDRATES THROUGH GEMINAL ¹³ C-H COUPLING CONSTANTS

K. Bock, I. Lundt, and C. Pedersen

Department of Organic Chemistry, Technical University of Denmark, DK-2800 Lyngby, Denmark

(Received in UK 5 February 1973; accepted for publication 14 February 1973)

Lately an increasing number of papers describing ¹³C nmr spectra of carbohydrates have appeared. It has been shown that the chemical shift of the anomeric carbon atom is strongly dependent on the anomeric configuration. ¹⁻⁴ J₁₃_{C-H} values have been measured in a few cases only. Perlin and Casu, ⁵ through ¹³C and ¹H nmr spectra of ¹³C enriched glucose, found that J_{13</sup>_{C1-H1} was 169 Hz for the a-anomer whereas the corresponding value for the β -anomer was 160 Hz.}

By the use of gated decoupling⁶ with pulsed Fourier spectrometers it is possible, within a reasonable time, to measure C-H coupling constants on unenriched compounds. Using this technique we have measured C-H coupling constants of a number of carbohydrate derivatives. We found that ${}^{J}13_{C1-H1}$ was larger than the other geminal C-H coupling constants, involving C-2 to C-6. The latter had values of 143-148 Hz in free sugars and in methyl glycosides and did not appear to be very dependent on stereochemistry. This is, however, being further investigated.

The ${}^{J}13_{C1-H1}$ values, on the other hand, showed a clear dependence on the orientation of the substituent at C-1 and may therefore provide information about the anomeric structures and/or conformations.

In Table 1 are presented chemical shifts and 13 Cl-H1 coupling constants of a number of carbohydrates. Most of the chemical shifts were determined previously by other authors. The methyl glycosides in which H-1 is axially oriented have a J 13_{Cl-H1} value of 158-162 Hz, whereas the glycosides with an equatorial H-1 have higher J-values (169-171 Hz). This difference was found both in unsubstituted and in acetylated glycosides. In free sugars the same difference between J 13_{Cl-H1} of anomers was found from spectra measured on equilibrated mixtures in aqueous solution.

-	1 ^a		

	axial H-1 ^b			equatorial H-1 ^b		
Compound	ano- mer	C-1 p.p.m. ^c	^J 13 _{C1-H1} Hz ^d	ano- mer	C-1 p.p.m. ^c	^J 13 _{C1-H1} Hz ^d
methyl D-glucopyranoside	β	105.8 ⁴	159	a	101.8 ⁴	170
tetra- <u>O</u> -acetate	β	101.1^2	162	a	96.3 ²	173
methyl D-galactopyranoside	β	104.1 ²	160	۵	99.8 ²	170
tetra- <u>O</u> -acetate	β	101.6	161	a	96.7 ²	172
methyl D-mannopyranoside				۵	103.2 ²	170
tetra-O-acetate				۵	97.8 ²	171
3- <u>O</u> -methyl-2, 4, 6-						
tri- <u>O</u> -acetyl	β	99.1	158.5			
methyl D-xylopyranoside	β	106.6^2	158			
methyl D-arabinopyranoside				β	104.3 ⁴	170
methyl D-lyxopyranoside				a	105.6 ⁴	169
penta-O-acetyl-D-glucopyra-						
nose	β	91.0 ³	165	a	90.1 ³	177
tetra-O-acetyl-2-O-methyl-						
D-glucopyranose	β	91.9	165	a	87.1	175
penta-O-acetyl-D-mannopy-						
ranose				a	90, 4 ³	175
tetra-O-acetyl-2-O-methyl-D-						
mannopyranose	β	90.1	163			
tetra- <u>O</u> -acetyl-D-glucopyra-						
nosyl fluoride	β	105.7	177.5	a	103.5	186
tetra-O-acetyl-D-glucopyra-						
nosyl chloride	β	87.1	172	a	89.8	184.5
D-glucopyranose ^e	β	96.3 ²	160	a	92.4 ²	169.5
p-galactopyranose ^e	β	97.0 ²	159.5	۵	92.8 ²	169.5
β -mannopyranose ^e	β	94.6 ²	160	a	95.2 ²	170
D-xylopyranose ^e	β	97.3 ²	160	۵	92. 8 ²	170

		axial H-1 ^b			equatorial H-1 ^b		
Compound		ano- mer	C-1 p.p.m. ^c	J ₁₃ C1-H1 Hz ^d	ano- mer	C-1 p.p.m. ^c	^{J13} C1-H1 Hz ^d
sucrose					^a gluc	92. 9 ⁷	168.5
raffinose					^a gluc	92. 2 ⁸	170
raffinose					^a galac	98. 2 ⁸	169
maltose ^e	C-1(OH)	β	95.6 ⁹	160	٩	91.7 ⁹	172
maltose	C-1(glycosidic)				a	99.4 ⁹	172
octa-O-acetyl-a-D-cellobiose C-1-(OAc)					a	88.6 ⁷	175
octa- <u>O</u> -ac	etyl-a-D-cellobiose C-1(glycosidic)	β	100.5 ⁷	160			

a) The spectra were measured at 22.63 MHz on a Bruker WH-90 instrument equipped with a multipulse generator.

b) In the preferred conformation.

Recalculated to TMS as internal reference. Acetates were measured from internal CDCl₃ = 76.9 p.p.m. Glycosides and free sugars were measured from internal dioxane = 67.4 p.p.m.

d) + 0.7 Hz measured at 30° C.

e) After equilibration in 50 % D_2O for 24 h at room temperature.

When a more electronegative substituent was introduced at C-1 the J_{13}_{C1-H1} increased, however, the difference of <u>ca</u>. 10 Hz between the two anomers was still observed. J_{13}_{C1-H1} may also be used for assignment of the anomeric structure of di- and oligosaccharides. Thus, J_{13}_{C1-H1} of the glucose moiety of sucrose was 170 Hz, in agreement with its a-glycosidic structure. The same value was found for both glucose and galactose in raffinose. Cellobiose octaacetate and maltose, the latter after mutarotation in water, also gave J_{13}_{C1-H1} values in accordance with their anomeric structures (Table 1).

Complete spectral data of the compounds shown in Table 1 will be published elsewhere The pulsed Fourier transform instrument was provided by The Danish National

Science Research Council.

REFERENCES

- 1. L. D. Hall and L. F. Johnson, Chem. Comm., 1969, 509.
- 2. A. S. Perlin, B. Casu, and H. J. Koch, Can. J. Chem., 1970, 48, 2596.
- 3. D. E. Dorman and J. D. Roberts, <u>J. Am. Chem. Soc.</u>, 1970, <u>92</u>, 1355.
- 4. E. Breitmaier, W. Voelter, G. Jung, and C. Tänzer, <u>Chem. Ber.</u>, 1971, <u>104</u>, 1147.
- 5. A.S. Perlin and B. Casu, Tetrahedron Letters, 1969, 2921.
- 6. J. Feeney and D. Shaw, Chem. Comm., 1970, 554.
- 7. D. E. Dorman and J. D. Roberts, <u>J. Am. Chem. Soc.</u>, 1971, <u>93</u>, 4463.
- 8. A. Allerhand and D. Doddrell, J. Am. Chem. Soc., 1971, 93, 2777.
- 9. W. Voelter, E. Breitmaier, and G. Jung, Angew. Chem., 1971, 83, 1011.